\qquad

Read the questions carefully to understand it, before answering on the question paper. Write clearly and concisely. Write set-up equation, then put the raw numbers with units before doing your calculation. Use the reverse side of your answer paper as scratch. Ask your instructor if you don't understand anything. A periodic table \& some formulas are on the back. (Total pts. $=85+(3 * 21=63=148)$.

SHORT ANSWER. To get full points, show all your work in details with set up equation and units.

1) Styrene is produced by catalytic dehydrogenation at high temperatures based on
2) \qquad the reaction below. Calculate the $\Delta_{\mathrm{r}} \mathrm{G}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ and the equilibrium constant, K , at $25^{\circ} \mathrm{C}$ (6 pts.). Is the reaction spontaneous at $25^{\circ} \mathrm{C}$ using the following information in the table below (2 pts .) (Total 8 pts.)?

ethylbenzene, $\mathrm{C}_{8} \mathrm{H}_{10}$
styrene, $\mathrm{C}_{8} \mathrm{H}_{8}$

	ethylbenzene (1)	styrene (1)	hydrogen (g)
$\Delta_{f} \mathrm{H}^{\circ}\left(\mathrm{kJol}^{-1}\right)$	-12.5	103.8	0
$S^{\circ}\left(\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$	255	238	130.6

2) Calculate the pH of a 0.075 M acetic $\operatorname{acid}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ solution. For your calculation
3) \qquad show what happens in a stepwise fashion, with ICE chart if necessary . $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ (6 pts.)
4) In $\mathrm{SF}_{3}+$ calculate the total number of valence electrons (2 pts.), draw the Lewis structure (3 pts .) and write the hybridization of the central atom (2 pts .) (Total 7 pts).
5) The molecule 2-chloro-4-methylhexane, the product, is made by addition of HCl to an alkene, the reactant. Write a balanced chemical equation using condensed or skeleton structures of the reactants (3 pts .) and products (3 pts .) for this reaction. Also name the reactant (3 pts .) (10 pts . tot.).
6) \qquad
7) \qquad
8) 250 mL of a buffer of pH 12.25 was made by dissolving $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ in water.
9)

A buffer constitutes a weak acid and its conjugate base. Which is the acid here (1 pts .) and which is the conjugate (1 pts .). Write the formula you would use to calculate the pH of the buffer (1 pt .). If the concentration of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is 0.4 M , what mass (in grams) of
$\mathrm{Na}_{\mathbf{2}} \mathrm{HPO}_{4}$ is present in that $\mathbf{2 5 0 \mathrm { mL }}$ buffer. $\left(\mathrm{K}_{\mathrm{a} 3}=4.2 \times 10^{-13}\right)(8$ pts. $)$
6) Equilibrium was established when a mixture of 0.20 mol of $\mathrm{NO}(\mathrm{g}), 0.10 \mathrm{~mol}$ of $\mathrm{H}_{2}(\mathrm{~g})$, and 0.20 mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is placed in a $2.0-\mathrm{L}$ vessel at 400 K . The equilibrium reaction is : $2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$
$\longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. If at equilibrium $[\mathrm{NO}]=0.062 M$, then calculate $\mathrm{K}_{\mathrm{p}} .(8 \mathrm{pts})$
7) The amount of fissionable material necessary to maintain a chain reactions is called the
\qquad . (2 pts)
8) What is the coordination number of the iron atom in $\mathrm{CaNa}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (2 pts.$\left.\right)$?
9) The most common coordination numbers are ___ (4 pts.).
6) \qquad
10) Calculate the nuclear binding energy (Joules Nucleon) of Helium- 4 nucleus .
(Given: Mass of a helium nucleus $=4.0015 \mathrm{amu}$; Mass of a proton $=1.00728 \mathrm{amu}$; Mass of a neutron $=1.00866 \mathrm{amu}$; Mass of an electron: $5.4858 \times 10-4 \mathrm{amu}) .(8 \mathrm{pts}$.
11) Strontium- 90 is a byproduct in nuclear reactors fueled by the radioisotope uranium- 235 . The half- life of strontium- 90 is 28.8 yr . What percentage of a strontium- 90 sample remains after 70.0 yr (8 pts .)?
12) Calculate the mass of Lithium metal produced when molten Lithium Chloride is electrolyzed in a cell with a current of $5.5 \times 10^{4} \mathrm{~A}$ flowing for a period of one day. Assume the electrolytic cell is 85% efficient (6 pts.).
10) \qquad

11) \qquad
12) \qquad
13) Write d electron configuration of the metal ion (2 pts.), draw the crystal-field
13) energy-level diagrams (to the right of the formula, 1 pt .) and show the placement of electrons (1 pts.) for the following complexes: ($2 \times 4=8 \mathrm{pts}$. total)
(a) $\left[\mathrm{VCl}_{6}\right]^{3-}$
(b) $\left[\mathrm{FeF}_{6}\right]^{3-}$ (a high- spin complex)

MULTIPLE CHOICE. On your scantron start from line 14 to answer the questions. Choose the one alternative that best completes the statement or answers the question (3 pts each).
14) The electron- domain geometry of a sulfur- centered compound is trigonal bipyramidal. The
14) hybridization of the central nitrogen atom is \qquad _-
A) sp
B) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
C) sp^{2}
D) $\operatorname{sp}^{3} d$
E) sp^{3}
15) What is the name of the compound below?

A) 2,4-methylbutene
B) 2,4-ethylbutene
C) 2,4-dimethyl-1- pentene
D) 2,5-dimethylpentane
E) 2,4-dimethyl-4- pentene
16) For a first- order reaction, a plot of \qquad versus \qquad is linear.
16)
A) $t, \frac{1}{[A]_{t}}$
B) $\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}, \mathrm{t}$
C) $\ln [A]_{t}, \frac{1}{t}$
D) $\ln [A]_{t}, t$
E) $[A]_{t}, t$
17) What change will be caused by addition of a small amount of HCl to a solution containing
17) fluoride ions and hydrogen fluoride?
A) The concentration of fluoride ions will increase as will the concentration of hydronium ions.
B) The concentration of hydronium ions will increase significantly.
C) The concentration of fluoride ion will decrease and the concentration of hydrogen fluoride will increase.
D) The concentration of hydrogen fluoride will decrease and the concentration of fluoride ions will increase.
E) The fluoride ions will precipitate out of solution as its acid salt.
18) Formation of solutions where the process is endothermic can be spontaneous provided that
A) the solvent is water and the solute is a gas
B) they are accompanied by another process that is exothermic
C) they are accompanied by an increase in disorder
D) the solvent is a gas and the solute is a solid
E) they are accompanied by an increase in order
19) The half- reaction occurring at the anode in the balanced reaction shown below is \qquad -
19)

$$
3 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+24 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{Fe}(\mathrm{~s}) \rightarrow 3 \mathrm{Mn}^{2}+(\mathrm{aq})+5 \mathrm{Fe}^{3}+(\mathrm{aq})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A) MnO_{4}^{-}(aq) $+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$ (l)
B) $\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-}$
C) Fe^{2+} (aq) $\rightarrow \mathrm{Fe}^{3+}$ (aq) $+\mathrm{e}^{-}$
D) $2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+12 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Mn}^{2}+(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
E) $\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$

Table 20.2

Half- reaction	$\mathrm{E}^{\circ}(\mathrm{V})$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.440
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{s})$	+0.771
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.154

20) The standard cell potential (E° cell) for the voltaic cell based on the reaction below is \qquad
V.

$$
\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{Fe}^{3+(\mathrm{aq})} \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})
$$

A) +0.46
B) -0.46
C) +1.39
D) $\dagger 0.617$
E) +1.21
21) Consider an electrochemical cell based on the reaction:
21)

$$
2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Sn}(\mathrm{~s}) \rightarrow \mathrm{Sn}^{2}+(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Which of the following actions would not change the measured cell potential?
A) increasing the tin (II) ion concentration in the anode compartment
B) lowering the pH in the cathode compartment
C) increasing the pressure of hydrogen gas in the cathode compartment
D) addition of more tin metal to the anode compartment
E) Any of the above will change the measured cell potential.
22) Nuclei above the belt of stability can lower their neutron- to- proton ratio by \qquad .
22) \qquad
A) gamma emission
B) beta emission
C) positron emission
D) electron capture
E) Any of the above processes will lower the neutron- to- proton ratio.
23) How many neutrons are emitted when a californium- 249 nucleus $(Z=98)$ is bombarded with a
23) carbon-12 nucleus to produce a ${ }_{104}^{257}$ Rf nucleus?
A) one
B) four
C) zero
D) three
E) two
24) ${ }^{131}$ I has a half- life of 8.04 days. Assuming you start with a 1.53 mg sample of ${ }^{131} \mathrm{I}$, how many mg will remain after 13.0 days?
A) 0.835
B) 0.268
C) 0.422
D) 0.499
E) 0.440
25) The mass of a proton is 1.00728 amu and that of a neutron is 1.00867 amu . What is the mass defect (in amu) of a ${ }_{27}^{60}$ Co nucleus? (The mass of a cobalt- 60 nucleus is 59.9338 amu .) ___ ?
A) 27.7830
B) 0.4827
C) 0.0662
D) 0.5489
E) 0.5405
26) Which one of the following ions cannot form both a high spin and a low spin octahedral complex ion?
A) Cr^{3+}
B) Cr^{2+}
C) Mn^{3+}
D) Co^{2+}
E) Fe^{3+}
27) Formation of a complex species of M^{n+} metal ion with ligands often \qquad _.
27) \qquad
A) reduces availability of the free $\mathrm{M}^{\mathrm{n}+}$ ions in solution
B) may cause changes in the ease with which $\mathrm{M}^{\mathrm{n}+}$ is reduced or oxidized
C) alters original physical properties of $\mathrm{M}^{\mathrm{n}+}$
D) "masks" original chemical properties of both the $\mathrm{M}^{\mathrm{n}+}$ ion and the ligands
E) all of the above
28) A complex that absorbs light at 700 nm will appear \qquad -
28)
A) yellow
B) violet
C) red
D) orange
E) green
29) Which one of the following substances has three unpaired d electrons?
29)
A) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
B) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
C) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
D) $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4+}$
E) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
30) Which one of the following complexes would most likely have tetrahedral geometry?
30)
A) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
B) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
C) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3}$
E) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

TRUE/FALSE. Circle 'A' if the statement is true and 'B' if the statement is false (3 pts each).

31) The solubility of slightly soluble salts containing basic anions is proportional to the pH of the solution.
32) Rates of reaction can be positive or negative.
33) Transition metal complexes are colored because of the energy gap between the d orbitals.
34) Positron emission causes a decrease of one in the atomic number.
35)
36) \qquad
37)
38)

)
\qquad

