MC, Chem1B, Sp 15, Test1

Name____

Read questions carefully to understand what is being asked. If you have doubt, do ask your instructor. Use the reverse side o your answer paper as scratch. Use attached periodic table and important constants chart. On your scantron, please start from number 11 to answer the multiple choice questions. (Total pts. = 84 + 36 + 12 = 132)

SHORT ANSWER: Be clear in your answer. Show all your calcualtions using appropriate set up and units.

1) Draw the Lewis structure, electronic geometry and then write the hybridization of the
central atom next to the following compounds (3x6 = 18 pts):
(a) SO_4^2 -1)

(b) I3-

(c) PCI₅

2) Draw skeletal or condensed structures next to the names (2x5 = 10pts.):
2) ________
(a) trans-2,3-dimethyl-3-hexene

(b) 1,2-Dimethylcyclopentane

3) Write the systematic (IUPAC) name next to the following structures (2x3 = 6pts.).

4) (a) Show the structure(s) of the product(s) of the following reaction (5 pts) and (b) name what kind of reaction is this (2 pts) :

4)

 $n CICO(CH_2)_4COCI + 2n H_2N(CH_2)_6NH_2 ---->$

5) Draw the condensed structures of the reactants and product(s) of the reaction between propionic acid and 1-propanol (8 pts.) and name the major product (2 pts.) and the functional group it conatins (2 pts.).

5)

3) _____

6) The following experimental data were obtained at constant temperature for the reaction:

	$2NO(g) + O_2 (g)$)> $2 \text{ N0}_2(g)$	
	Initial Concentra	Initial Rate	
Experiment	[NO]	[O2]	(M s ⁻¹)
1	0.0010	0.0010	7.0 x 10-6
2	0.0010	0.0020	1.4 x 10-5
3	0.0010	0.0030	2.1x 10-5
4	0.0020	0.0030	8.4 x 10-5
5	0.0030	0.0030	1.9 x 10 -4

a. Calculate the order of the reaction with respect to each reactant (6 pts.).

b. Write the rate law for the reaction (3 pts.).

7) The reaction $2NO(g) + O_2(g) = 2 NO_2(g)$ is 2nd order in $[NO_2]$ at 300°C with k = 0.543 M⁻¹ s⁻¹; If in a closed container, the initial concentration of NO₂ = 0.05 M, then calculate the concentration of NO₂ after half an hour at that temperature (6 pts.). [Note: For 2nd order kinetics: $1/[A]_t = k \cdot t + 1/[A]_0$]

7)

8) Activation energies of reactions, E_a, are frequently found graphically. The Arrhenius equation:

 $\ln (k) = ((-E_a))/RT + \ln(A)$

is used. Values of k, the rate constant, are measured at various temperatures, then ln k and 1/T are calculated and plotted.

In one particular experiment the, co-ordinates of two points: one at upper left is A(.0013,-3.8) and the other at lower right is B(0.0017, -12.8). Using this information:

(a) Calculate the slope of the st. line (4 pts.)

(b) Calculate the energy of activation of the reaction (Ea) in calories (6 pts.)

9) If a rate law is se rate (4 pts.).	cond order (reactant)	, doubling the react	ant the r	eaction 9) _	
10) The minimum er	nergy to initiate a cher	nical reaction is the	(2 pts.).	10)	
IULTIPLE CHOICE. Star atement or answers the q	rt on line 11 of your so juestion (3 pts each).	cantron paper. Sele	ct the one alternative	e that best comple	etes the
 11) The electron-dom A) T-shaped, B) tetrahedral C) octahedral, D) trigonal bip E) trigonal bip 	main geometry and m ectively. trigonal planar , trigonal pyramidal trigonal planar pyramidal, T-shaped pyramidal, trigonal pla	olecular geometry o anar	f iodine trichloride a	re and	d 11)
12) The F-B-F bond	angle in the BF3 mole	cule is			12)
A) 109.5°	B) 120°	C) 180°	D) 90°	E) 60°	
13) According to val the bond in Br ₂ ?	ence bond theory, wh	ich orbitals on brom	iine atoms overlap in	the formation of	13)
A) 3s	B) 3p	C) 4s	D) 4p	E) 3d	
14) The total number A) 3	r of π bonds in the H– B) 4	-C≡C—C≡C—C≡N m C) 6	olecule is D) 9	- [.] E) 12	14)
15) The Lewis struct oxygen atoms in	ure of carbon monoxic carbon monoxide are	de is given below. T and	he hybridizations of, respectivel	the carbon and y.	15)
: C ≡ O					
A) sp, sp ³	B) sp ³ , sp ²	C) sp, sp	D) sp ² , sp ³	E) sp ² , sp ²	
16) The compound b	elow is an				16)
Н—С	H H C - C - H H H				
A) olefin B) alkane C) alkyne D) alkene E) aromatic co	ompound				

 17) Optically active mol A) cofactors B) chiral compou C) allotropes D) geometrical iso E) enantiomers 	ecules that are mirro nds omers	or images of each oth	ner are called		17)
 18) The addition of HBr A) no reaction B) 2-bromobutan C) 2,3-dibromobutan D) 1-bromobutan E) 1,2-dibromobutan 	to 2-butene produce e utane e utane	es			18)
19) Which substance in	the reaction below ei	ther appears or disa	ppears the fastest?		19)
4NH3 + 70	$0_2 \rightarrow 4NO_2 + 6H_2C$)			
A) O ₂ B) NH ₃ C) H ₂ O D) NO ₂ E) The rates of ap	pearance/disappeara	ance are the same fo	r all of these.		
20) Consider the follow	ing reaction:				20)
A →2C					
The average rate of a and the rate of disar	appearance of C is gi	ven by Δ [C]/ Δ t. Cor et Δ [C]/ Δ t = ×	nparing the rate of a $(-\Lambda[A]/\Lambda t)$.	opearance of C	
A) +2	B) +1	C) -1/2	D) -1	E) +1/2	
21) If the rate law for the	e reaction				21)
2A + 3B -	->products				
is first order in A an	d second order in B	then the rate law is i	rate =		
A) k[A] ² [B] ³	B) k[A][B] ²	C) k[A] ² [B] ²	D) k[A] ² [B]	E) k[A][B]	
22) The half-life of a firs takes m A) 8.2	st-order reaction is 1 in for it to decrease to B) 0.048	3 min. If the initial c o 0.055 M. C) 3.6	oncentration of react D) 11	ant is 0.085 M, it E) 8.4	22)

TRUE/FALSE In V	our scantron fill u	n bubble A for tr	ue and bubble B for	false answers (3)	nts (question)
INUL/IALSE. III y	our scannon, mic				pls./questio

23) Hybridization is the process of mixing atomic orbitals as atoms approach each other to form a bond.	23)
24) A carbon with three or more attached groups will be chiral.	24)
25) The half-life for a first order rate law depends on the starting concentration.	25)
26) Units of the rate constant of a reaction are independent of the overall reaction order.	26)