MC, Chem1B, Sp15, Lec Exam3

Name_

Read questions carefully to understand what is being asked, before answering. No outside paper is allowed. Use the reverse side of your answer paper as scratch. Use the important equation table and periodic table provided. (Total points = 53 + (19x3=)57 = 110).

Show your calculation first with set up equation. Then use the raw data with units in the equation in the equation and then complete the calculation.

1) 0.25g of a monobasic acid (MW = 122 g/mol) in 100.00 mL of water is being 1) titrated with 0.15M NaOH solution. What is the pH of the solution at the equivalence point? (K_a of the acid = 6.4 x 10⁻⁵) (8 pts.)

2) A nonlinear best fit plot of Keq versus Temperature (Kelvin) of tetraborate equilibrium: $Na_2B_4O_5(OH)_4 \cdot 8H_2O(s) < ----> 2 Na^+(aq) + B_4O_5(OH)_4^{2-}(aq) + 8 H_2O(l)$ gives $\Delta H^\circ = 96 \text{ kJ/mol}$ and $\Delta S^\circ = 300 \text{ J/mol}$. From this data calculate the K_{eq} at 25° C. Show set up, raw data and units. (8 pts.) 3) The following information is available for the reaction at 25°C:

CaCO3 (s)	> CaO (s) + C	CO ₂ (g)
-1129.16	-603.42	-394.36
-1207.6	-635.09	-393.51
91.7	38.2	213.74
	CaCO ₃ (s) -1129.16 -1207.6 91.7	CaCO ₃ (s)> CaO (s) + C -1129.16 -603.42 -1207.6 -635.09 91.7 38.2

(a) Calculate the Gibbs free energy change of the reaction (3pts.).

(b) Calculate the temperature in °C when the reaction will be favorable (5 pts.).

4) For the cell reaction : $3 \text{Ni}^{2+} (aq) + 2 \text{Cr}(OH)_3(s) + 10 \text{OH}^-(aq) ---> 3 \text{Ni}(s) + 2 \text{Cr}O_4^{2-} (aq) + 8 \text{H}_2O(l);$ Given: $\text{Cr}O_4^{2-} (aq) + 4 \text{H}_2O(l) + 3 \text{e}^- --> \text{Cr}(OH)_3(s) + 5 \text{OH}^-(aq) \text{E}^0_{\text{red}} = -0.13 \text{V};$ $\text{Ni}^{2+} (aq) + 2 \text{e}^- --> \text{Ni}(s) \text{E}^0_{\text{red}} = -0.28 \text{V};$

(a) Calculate the E^0 at T = 298 K (4 pts.)

(b) Calculate the standard free energy change ΔG^0 at T = 298 K for the above reaction (5 pts.);

4)

 $Cu^{2+}(aq) + Fe(s) \rightarrow Fe^{3+}(aq) + Cu(s)$ Write the balanced **reduction** half-reaction below. (3 pts.)

6) A Voltaic cell is made up of two half cells at 298 K: Zn/Zn^{2+} half cell with $[Zn^{2+}] = 0.010$ 6) M and H_2/H^+ half cell with $[H^+] = 2.5$ M and $P_{H2} = 0.30$ atm. Given E^0_{red} for $Zn^{2+} + 2e^- -> Zn$ (s) = -^{MIMIM} V; (Total = 14 pts.)

(1) Determine the cell reaction (with states) from the half cell reactions (2 pts.)

(2) Calculate the E⁰_{cell} (2 pts.)

(3) Calculate the molarity of H_2 (g) given PV = n RT (3 pts.)

(4) Calculate the Quotient Q for the cell reaction (3 pts.)

(5) Using the above values calculate the E_{cell} using Nersnt Eqn. (4 pts.)

7) In the formula $\Delta G = -nFE$, F is the _____. (3 pts.)

MULTIPLE CHOICE. On the scantron, select the bubble that has the same number as the question number. Show your work to select the one response that best completes the statement or answers the question (3 pts each).

	pH of solution in flask	12.0 10.0 8.0 6.0 4.0 2.0 5 10 15 1	Equivalence Point 20 25 30 35 40 45		
		mL of 0.115	M NaOH added to flash	<	
 8) A 25.0 mL sample of solution. The titrati A) a weak acid B) a strong base C) a strong acid D) a weak base E) neither an aci 	of a solution of a on curve above d nor a base	וח unknown compot was obtained. The נ	und is titrated with a 0.1 inknown compound is _	15 M NaOH 	8)
9) For which salt shou	Ild the aqueous	solubility be most se	ensitive to nH?		9)
A) $Ca(NO_3)_2$	B) Cal ₂	C) CaF ₂	D) CaBr ₂	E) CaCl ₂	<i>//</i>
10) What is the evideti	on number of ni	tragon in the UNO	2		10)
A) +1	B) +7	C) +3	D) +5	E) -1	10)
,	,	,	,	,	
11) Which transformat A) O ₂ to H ₂ O	ion could take p	lace at the anode of	an electrochemical cell?		11)
B) Cr ₂ O ₇ 2- →0	Cr ²⁺				
C) HAsO ₂ to As					
D) F ₂ toF-					
E) None of the a	bove could take	place at the anode.			
12) Which transformat A) Mn ²⁺ →Mn0	ion could take p D4 ⁻	lace at the cathode o	of an electrochemical cel	1?	12)
B) MnO ₂ →Mn	O ₄ -				
C) Br ₂ →BrO ₃ ⁻					
D) HSO ₄ ⁻ \rightarrow H ₂	SO3				
E) NO \rightarrow HNO ₂	2				

Table 20.2					
Half-reaction	E° (V)				
$\overline{\mathrm{Cr}^{3+}}$ (aq) + 3e ⁻ \rightarrow Cr (s)	-0.74				
Fe^{2+} (aq) + $2e^{-} \rightarrow Fe$ (s)	-0.440				
Fe ³⁺ (aq) + e ⁻ → Fe ²⁺ (s) +0.771				
Sn^{4+} (aq) + 2e ⁻ $\rightarrow Sn^{2+}$	(aq) +0.154				
	·				
13) Which of the following	reactions will o	ccur spontaneousl	y as written?		13)
A) 3Sn ⁴⁺ (aq) + 2Cr	$r(s) \rightarrow 2Cr^{3+}$ (a)	q) + 3Sn ² + (aq)			
B) $3Fe(s) + 2Cr^{3+}(a)$	aq) $\rightarrow 2Cr(s) +$	3Fe ²⁺ (aq)			
C) 3Fe ²⁺ (aq) →Fe ((s) + 2Fe ³⁺ (aq)	1			
D) Sn ⁴⁺ (aq) + Fe ³⁺	(aq) \rightarrow Sn ²⁺ (a	aq) + Fe ²⁺ (aq)			
E) Sn ⁴⁺ (aq) + Fe ²⁺	(aq) \rightarrow Sn ²⁺ (a	q) + Fe (s)			
				1-	14)
(14) The standard cell poten	tial (E ⁻ cell) for t	ine voltaic cell bas	ed on the reaction being	ow is	14)
۷.					
Sn ²⁺ (aq) + 2Fe ³⁻	$+$ (aq) $\rightarrow 2Fe^{2+}$	(aq) + Sn ⁴⁺ (aq)			
	χ μ				
A) +1.21	B) +0.617	C) +0.46	D) +1.39	E) -0.46	
15) The reduction half react	tion occurring in	h the standard hyc	lrogen electrode is	·	15)
A) H ₂ (g, 1 atm) \rightarrow 2	2H+ (aq, 1M) +	2e-			
B) 2H+ (aq) + 2OH-	→H ₂ O (I)				
C) 2H+ (aq, 1M) + (CI_2 (aq) $\rightarrow 2HC$	l (aq)			
D) 2H+ (ag. 1M) + 2	e- →H2 (a. 1)	atm)			
$F) O_{2} (a) + AH^{\dagger} (a)$	2 (3)				
$E = O \sum_{i=1}^{n} O \sum_{i=1}^$	$1) + 4e \rightarrow 2112$	0(1)			
16) The standard cell poten	tial (E°cou) for t	he reaction below	is +1 10 V The cell pr	tential for this	16)
reaction is	(when the cone	$x_{\text{optration of } [Cu^{2}]}$	-1 1010-5 M and	$[7n^{2}+1]$ 10 M	
	when the cond		$] = 1.0 \times 10^{-9}$ IVI and	$[Z \Pi^2 ,] = 1.0 $ IVI.	
Zn (s) + Cu ²⁺	(aq) → Cu (s) +	Zn ²⁺ (ag)			
		ς μ.			
A) 0.95	B) 0.80	C) 1.25	D) 1.10	E) 1.40	
(1/) The thermodynamic qu	antity that expr	esses the degree of	alsorder in a system	IS	1/)
R) entrony					
C) internal energy					
D) enthalpy					
E) heat flow					
18) The normal boiling point	nt of water is 10	0.0°C and its mola	r enthalpy of vaporiz	ation is 40.67	18)
kJ/mol. What is the chai	nge in entropy i	n the system in J/k	when 39.3 grams of s	steam at 1 atm	
condenses to a liquid at	the normal boil	$rac{1}{1}$	0 00 (م	E/ 220	
A) 3/3	0.00 (0	C) -40.7	D) -00.0	EJ -230	

	19) ΔS is positive for the reaction A) 2NO ₂ (g) → N ₂ O ₄ (g) B) 2Hg (l) + O ₂ (g) → 2HgO (s) C) BaF ₂ (s) → Ba ²⁺ (aq) + 2F ⁻ (aq) D) CO ₂ (g) → CO ₂ (s) E) 2H ₂ (g) + O ₂ (g) → 2H ₂ O (g)	19)	
	20) Of the following, the entropy of is the largest. A) HCI (s) B) HCI (g) C) HCI (I) D) HBr (g) E	20) E) HI (g)	
TRU	JE/FALSE. Select A in the scantron if the statement is TRUE and B if the statement is FAL	.SE (3 pts).	
	21) The quantity of energy gained by a system equals the quantity of energy gained by its	surroundings.	T or F
	22) The more negative ΔG° is for a given reaction, the larger the value of the correspondir constant, K.	ng equilibrium	T or F
	23) The vaporization of a substance at its boiling point is an isothermal process		T or F
	24) The entropy of a pure crystalline substance at 0°C is zero.		T or F
	25) The electrode where reduction occurs is called the anode.		T or F
	26) The standard reduction potential of X is 1.23 V and that of Y is -0.44 V therefore X is c	oxidized by Y.	T or F
MUL work	LTIPLE CHOICE. On the scantron, select the bubble that has the same number as the que k to select the one response that best completes the statement or answers the question (3 p	estion number. Sho ots each).	w your
	27) EXTRA POINT QUESTION:	27)	

In which one of the following solutions is silver chloride the most soluble? A) 0.181 M HCl B) 0.181 M NaCl C) 0.744 M LiNO₃ D) pure water E) 0.0176 M NH₃