Chem1B, Spring17, MC, FinalTest

•

Name

Read the questions carefully to understand it, before answering on the question paper. Write clearly and concisely. Write set-up equation, then put the raw numbers with units before doing your calculation. Use the reverse side of your answer paper as scratch. Ask your instructor if you don't understand anything. A periodic table & some formulas are on the back. (Total pts. = 64 + (3*28=) 84 = 148).

SHORT ANSWER. To get full points, show all your work in details with set up equation and units.

1) The molecule 2-chloro-4-methylhexane, the product, is made by addition of HCI to an alkene, the reactant . Write a balanced chemical equation using condensed or skeleton structures of the reactants (3 pts.) and products (3 pts.) for this reaction. Also name the reactant (3 pts.) (10 pts. tot.).

1) _____

2) 250mL of a buffer of pH 12.25 was made by dissolving Na₂HPO₄ and Na₃PO₄ in water. 2) A buffer constitutes a weak acid and its conjugate base. Which is the acid here (1 pts.) and which is the conjugate base (1 pts.). Write the formula you would use to calculate the pH of the buffer (1 pt.). If the concentration of Na₃PO₄ is 0.4 M, what mass (in grams) of

Na₂HPO₄ is present in that 250mL buffer. ($K_{a3} = 4.2 \times 10^{-13}$) (8 pts.)

3) Equilibrium was established when a mixture of 0.20 mol of NO(g), 0.10 mol of H₂(g), and 0.20 mol of H2O(g) is placed in a 2.0-L vessel at 400 K. The equilibrium reaction is : 2 NO(g) + 2 H2(g) $<\longrightarrow$ N₂(g) + 2 H₂O(g). If at equilibrium [NO] = 0.062 *M*, then calculate K_P.(8 pts)

4) Calculate the mass of Lithium metal produced when molten Lithium Chloride is electrolyzed in a cell with a current of 5.5x10⁴ A flowing for a period of one day. Assume the electrolytic cell is 85% efficient (6 pts.).

4)

5) The amount of fissionable material necessary to maintain a chain reactions is called the	5)	
(2 pts)		
6) What is the coordination number of the iron atom in CaNa[Fe(CN)6] (2 pts.)?	6)	
7) The most common coordination numbers are (4 pts.).	7)	

8) Strontium-90 is a byproduct in nuclear reactors fueled by the radioisotope uranium-235. The half-life of strontium-90 is 28.8 yr. What percentage of a strontium-90 sample remains after 70.0 yr (8 pts.)?

8)

9) (A) Write the condensed electronic configurations next to each species (eg. [Ar] pts./each) and then (B) circle if it is paramagnetic or not (1 pts/each) (total 8 pts.	3dn) (3 9)):
Cr ³⁺ paramagnetic / not paramagnetic	
Ag+ paramagnetic / not paramagnetic	
10) Write d electron configuration of the metal ion (2 pts.), draw the crystal-field energy-level diagrams (to the right of the formula, 1 pt.) and show the placement electrons (1 pts.) for the following complexes: (2 x 4 = 8 pts. total)	10) nt of
(a) [VCI ₆] ³⁻	

(b) [FeF₆]³⁻ (a high-spin complex)

MULTIPLE CHOICE. On your scantron start from same bubble number as the M/C question number. Choose the one alternative that best completes the statement or answers the question (3 pts each).

11) Which process	has $\Delta S > 0$?			11)
A) H ₂ C	$D(g) \rightarrow H_2 G$	D(l)		
B) 2Hg	$g(l) + O_2(g) \longrightarrow$	2HgO(s)		
C) CaC	$O(s) + CO_2(g) \rightarrow$	CaCO ₃ (s)		
D) 2Na	$4_2O_2(s) + 2H_2O(s)$	\rightarrow 4NaOH(aq) + 0	$D_2(g)$	
A)	В)	C)	D)	
12) Which combination temperature?	ation represents a cher	nical reaction that is	spontaneous at any	12)
A) ΔH	< 0 and $\Delta S < 0$ B).	$\Delta H < 0 \text{ and } \Delta S > 0$		
C) ΔH	> 0 and $\Delta S < 0$ D)	$\Delta H > 0$ and $\Delta S > 0$		
A)	B)	C)	D)	
13) Which changes	is endothermic?			13)
A) CO	$p(g) \rightarrow CO_2(s)$	B) $CO_2(g) \rightarrow CO_2(g)$	1)	
C) CO	$_2(s) \rightarrow CO_2(g)$	D) $CO_2(l) \rightarrow CO_2(l)$	s)	
A)	B)	C)	D)	
14) Calculate ΔG°	for the reaction $(F = 9)$	6,480 C/mol. e):		14)
$3Pb + 2Fe^{+3}$	$\left \leftrightarrow\right.$	$3Pb^{+2} + 2Fe$	$E^{o} = 0.094 V$	
A) -54	kJ B) -27 kJ C) -18	kJ D) -9.0 kJ		
۸)	B)	C)	(ח	
~)	6)	0)	0)	
15) Which will shi	ft this equilibrium to th	ne reactants?		15)
2NOBr(g)	$ \leftrightarrow$ 2	NO(g) + Br2(l)	$\Delta H^{o} = 30 \text{ kJ. mol}^{-1}$	
A) decrC) incr	rease the temperature rease [NOBr]	B) decrease the pD) add a catalyst	pressure	
A)	В)	C)	D)	

16) If the equilibrium constant for a reaction is 1.6×10^{-17} , then

- A) at equilibrium [Reactants] >> [Products].
- B) at equilibrium [Reactants] << [Products].
- C) it takes a long time to reach equilibrium.
- D) equilibrium is reached very rapidly
- A) B) C) D)
 17) What is the pH of a buffer solution in which the molar concentration of acetic acid is 0.15 M and the molar concentration of the acetate ion is 0.55 M? K_a of acetic acid = 1.8x10⁻⁵.
 A) 4.74 B) 5.01 C) 5.30 D) 12.93

C)

A)

18) What is the approximate pK_a of the weak acid being titrated?

B)

16)

18)

D)

17)

19) What is the name of the compound below?

$$\begin{array}{ccccccc}
H & H \\
& | & | \\
H_3C & --C & --C & --C & --C & --C \\
& | & | & | \\
H_3C & H & CH_3
\end{array}$$

A) 2,4-methylbuteneB) 2,4-ethylbuteneC) 2,4-dimethyl-1-penteneD) 2,5-dimethylpentane

E) 2,4-dimethyl-4-pentene

20) Of the following, _____ is an exothermic process.

A) freezing

B) subliming

C) melting

D) boiling

E) All of the above are exothermic.

21) For a first-order reaction, a plot of ______ versus _____ is linear. 21) _____
A) t,
$$\frac{1}{[A]_t}$$
 B) $\frac{1}{[A]_t}$, t C) In $[A]_t$, $\frac{1}{t}$ D) In $[A]_t$, t E) $[A]_t$, t

22) The half-reaction occurring at the anode in the balanced reaction shown below is ______.

 $3MnO_4^-$ (aq) + 24H⁺ (aq) + 5Fe (s) $\rightarrow 3Mn^{2+}$ (aq) + 5Fe³⁺ (aq) + 12H₂O (l)

A) MnO_4^- (aq) + $8H^+$ (aq) + $5e^- \rightarrow Mn^{2+}$ (aq) + $4H_2O$ (I) B) Fe (s) $\rightarrow Fe^{3+}$ (aq) + $3e^-$ C) Fe^{2+} (aq) $\rightarrow Fe^{3+}$ (aq) + e^- D) $2MnO_4^-$ (aq) + $12H^+$ (aq) + $6e^- \rightarrow 2Mn^{2+}$ (aq) + $3H_2O$ (I) E) Fe (s) $\rightarrow Fe^{2+}$ (aq) + $2e^-$

23) Consider an electrochemical cell based on the reaction:

 $2H^+$ (aq) + Sn (s) \rightarrow Sn²⁺ (aq) + H₂ (g)

Which of the following actions would not change the measured cell potential?

A) increasing the tin (II) ion concentration in the anode compartment

B) lowering the pH in the cathode compartment

C) increasing the pressure of hydrogen gas in the cathode compartment

D) addition of more tin metal to the anode compartment

E) Any of the above will change the measured cell potential.

23)

22)

19)

20)

Table 20.2					
Half-reaction	E° (V)				
Cr^{3+} (aq) + $3e^- \rightarrow Cr$	(s) -0.74				
Fe ²⁺ (aq) + 2e ⁻ → Fe ((s) -0.440				
Fe^{3+} (aq) + e ⁻ $\rightarrow \mathrm{Fe}^{2+}$	(s) +0.771				
Sn ⁴⁺ (aq) + 2e ⁻ → Sn ²	²⁺ (aq) +0.154				
24) The standard cell po	' otential (E°مورا) fo	r the voltaic cell base	d on the reaction belo	ow is	24)
V					,
• •					
Sn ²⁺ (aq) + 2	Fe ³⁺ (aq) → 2Fe ²⁻	+ (aq) + Sn ⁴⁺ (aq)			
A) +0.46	B) -0.46	C) +1.39	D) +0.617	E) +1.21	
25) Nuclei above the be	elt of stability can l	ower their neutron-	to-proton ratio by	·	25)
A) gamma emissi	ion				
B) beta emission	lon				
D) electron captu	SIOLI Ire				
E) Any of the abo	ove processes will	lower the neutron-to	o-proton ratio.		
, ,	·		·		
26) How many neutron	s are emitted whe	n a californium-249	nucleus (Z=98) is boi	mbarded with a	26)
carbon-12 nucleus t	o produce a 257	?f nucleus?			
	104				
A) one	B) four	C) zero	D) three	E) two	
. 101				101	
27) ¹³¹ I has a half-life	of 8.04 days. Assu	iming you start with	a 1.53 mg sample of	¹³¹ I, how many	27)
mg will remain afte	r 13.0 days?	() 0 400	D) 0 400	F) 0 440	
A) 0.835	В) 0.208	C) 0.422	D) 0.499	E) 0.440	
28) The mass of a proto	n is 1.00728 amu a	and that of a neutron	is 1.00867 amu. Wha	t is the mass defect	28)
(in amu) of a ⁶⁰ Co 27	nucleus? (The ma	ss of a cobalt-60 nuc	leus is 59.9338 amu.)	?	
A) 27.7830	B) 0.4827	C) 0.0662	D) 0.5489	E) 0.5405	
29) Which one of the fo	llowing ions <u>cann</u>	<u>ot</u> form both a high s	pin and a low spin o	ctahedral complex	29)
ion?	2			2	
A) Cr ³⁺	B) Cr2+	C) Mn ³⁺	D) Co2+	E) Fe ³⁺	
					1
30) Formation of a com	plex species of M ^r	¹⁺ metal ion with liga	inds often	_·	30)
A) reduces availa	bility of the free N	An+ ions in solution			
B) may cause cha	inges in the ease v	vith which M ¹¹⁺ is red	duced or oxidized		
C) alters original	physical propertie	es of M ¹¹⁺			
D) "masks" origin	nai chemical prope	erties of both the M ¹¹	ion and the ligands		
c) all ut the abov	C				
31) A complex that also	orbs light at 700 p	m will appear			31)
A) yellow	B) violet	C) red	 D) orange	E) green	
			. 0		

 32) Which one of the following substances has three unpaired d electrons? A) [Ag(NH₃)₂]⁺ B) [Zn(NH₃)₄]²⁺ C) [Cr(CN)₆]³⁻ D) [V(H₂O)₆]⁴⁺ E) [Cu(NH₃)₄]²⁺ 	32)
 33) Which one of the following complexes would most likely have tetrahedral geometry? A) [NiCl₄]²⁻ B) [Pt(NH₃)₂Cl₂] C) [Cr(NH₃)₆]³⁺ D) [Fe(CN)₆]³ E) [Co(H₂O)₆]²⁺ 	33)
TRUE/FALSE. Circle 'A' if the statement is true and 'B' if the statement is false (3 pts each).	
34) Under ordinary conditions, a substance will sublime rather than melt if its triple point occurs at a pressure above atmospheric pressure.	34)
35) The solubility of slightly soluble salts containing basic anions is proportional to the pH of the solution.	35)
36) Rates of reaction can be positive or negative.	36)
37) Transition metal complexes are colored because of the energy gap between the d orbitals.	37)
38) Positron emission causes a decrease of one in the atomic number.	38)
MULTIPLE CHOICE. On your scantron start from same bubble number as the M/C question number. Cho alternative that best completes the statement or answers the question (3 pts each).	ose the one
39) SURVEY QUESTION: Historically the organic chemistry series 12A/B in Mission College chemistry department has been offered on specific semesters (12A - Fall, 12B - Spring). If you were taking chem 1B during the fall 2017 semester, the next opportunity to enroll in Chem 12A would be the following Fall 2018 semester. If Chem 12A course was offered the next Spring 2018 semester, would you have chosen to enroll in the course?	39)
 A) I do not intend to enroll in the organic chemistry courses because my major does not require it 	
 B) Yes, I would enroll in Chem 12A during the next spring 2018 semester C) No opinion 	
D) No, I will wait until the following Fall 2018 semester to enroll in Chem 12A	