Chem15, Fall16, SJCC, Test2 Q

Please read all the questions VERY carefully before answering. If you do not understand any question, please ask. Use the reverse side of the question paper as scratch. Use the periodic table and constant chart in the last page. No outside paper is allowed. Total points = 48+(22x3=)66=114

SHORT ANSWER. Please write the set-up equation first, then insert the raw data with units in the equation before doing your calculations. Points will be deducted if your answer is not clear.

- 1) Calculate the number of atoms in 39.7 g of naturally occuring bromine (Note the formula of Bromine). (6 pts.) $e^{-x} = \frac{1}{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-x} dx = \frac{1}{2} \int$
- 1) 2.99 x 10²³ Br atoms

$$39.79$$
 br $x = 1.001$ br $x = 2.99$ x 10^{23} br atoms

- 2) Calculate the amount (in grams) of phosphorous in a 15.5 gram sample of phosphorous pentachloride. (10 pts.)

- Write the net-ionic equation for the following reactions: Include phase labels for both 3) reactants and products. Also classify each reaction, giving its type. (4 pts/each; 8 pts. tot)

a.
$$2Na(s) + 2H_2O(1) ----> 2NaOH(aq) + H_2(g)$$

Net Ionic Equation:

Reaction Type:

2NA(5) + 2H2O(1) -> 2NA+(AR) + 2OH-(AR) + H2 (9) b. 3Na2CO3(aq) + 2Fe(NO3)3(aq) ----> Fe2(CO3)3(s)+ 6NaNO3(aq)

Net Ionic Equation: Reaction Type: Amble - AK (a0) + $2Fe^{\frac{3}{14}}$ (a0) + $(2Fe^{\frac{3}{14}})$ + $(2Fe^{\frac{3}{14}$

=
$$3 c_{03}^{2}$$
 (ab) $+ 2 fe^{3t}$ (ab) $\rightarrow fe_{2}(c_{03})_{3}$ (s)
 $9 c_{03}^{2}$ (ab) $+ 2 fe^{3t}$ (ab) $\rightarrow fe_{2}(c_{03})_{3}$ (s)

4) An acid has 40% C, 6.7% H, 53.3% O and its molar mass is 60.05 g/mol. Show your calculation to find the molecular formula of the acid? (10 pts.)

```
4) C2 H4 O2
```

31.1

16.69 Fe 4

6) 7.1901

5) 82.5

9 Ma504 4

MF = C2 H4 D2

$$c \rightarrow \frac{40 \text{ g/}}{1200 \text{ mod s}} = 3.33 \text{ mod } c$$

$$C \Rightarrow \frac{70.99}{12.011 \text{ g/mol}}$$

 $H \Rightarrow 6.79$ = 6.65 mol H
1.0079 $9/mol$

$$m_{EF} = 30.0258 \text{ q lmol}$$

$$M_{EF} = \frac{m_{MF}}{m_{EF}} = \frac{(60.05 \text{ q lmol})}{30.0258 \text{ g lmol}} = 2$$

5) (a) Calculate how many grams of anhydrous magnesium sulfate is in 63.6 grams of its hydrate salt. The hydrate salt contains 51.1% water by weight. (3 pts.)

(b) Calculate how many grams of water is in the 63.6 grams of the magnesium sulfate hydrate salt (3 pts.)

6) Iron, Fe(s) reacts with oxygen gas, $O_2(g)$ to produce Fe₂O₃ (s). Calculate how many grams

of (a) Fe and (b) O are necessary to make 23.7 g of Fe₂O₃ (4 pts. each, total 8 pts)

(a)
$$4 + \epsilon + 30 = 2 + \epsilon_2 0$$

(b) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(c) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(d) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(e) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(f) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(e) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(f) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon + 30 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon_2 0 = 2 + \epsilon_2 0$

(g) $4 + \epsilon$

(b)
$$23.79 \text{ fe}_{2}03 \times \frac{1 \text{ mbl fe}_{2}03}{159.697 \text{ gfe}_{2}03} \times \frac{3 \text{ mol } 02}{2 \text{ mol } \text{ fe}_{2}03} \times \frac{31.9989}{1 \text{ mol } 02} =$$

MULTIPLE CHOICE. On scantron, answer the questions starting from number 8. Choose the one alternative that best completes the statement or answers the question. (3 poins each)

of 80.0 amu, Isotope 2 has a mass of 85.0 amu. Calculate the atomic mass of the fictional element.		
A) 40 amu $M_{element} = (40.0 \times 0.50) + (85.0 \times 0.50)$ B) 82.5 amu		
B) 82.5 amu = 92.5 amu		
C) 42.5 amu		
D) 165 amu		
E) none of the above		
8) What is the mass percent of hydrogen in water?		В
1) 88 8 H&O = 14, 0148 AIMO	10	
B) 11.2 $(1.0099 \times 2) \times 100 = 11.2\%$ C) 33.3 (5.0146)		
$\frac{(1.0070 \text{ kg})}{(1.0070 \text{ kg})} \times 100 = 11.410$		
D) 5.60		
E) none of the above		
ON MATERIAL in the formula mass for dihoron tetrachloride?	· ·	b
9) What is the formula mass for diboroft tetractionac.		D
A) 198.89 amu B2Cl4 = 163.43 amu		
B) 163.43 amu		
C) 127.98 amu		
D) 234.34 amu		
E) none of the above		
*		
10) You have 10.0 g each of Na, C, Pb, Cu and Ne. Which contains the smallest number of moles?	0)	C
A) Ne B) Na C) Pb D) C E) Cu		
Ti) Ite		
11) II-ve menumalog of carbon are in 3.5 moles of calcium carbonate?	1)	Ð
11) How many moles of carbon are in 5.5 moles of carbon carbon are in 5.5 moles of carbon are in 5.5 m	1) _	Ð
A) 7	¹⁾ –	B
A) 7	1) _	B
A) 7	¹⁾ –	B
A) 7	¹⁾ –	Ð
A) 7	1) -	B
A) 7	^ <u>-</u>	B
A) 7	1) _ - - - -	B
A) 7 (a c0 3 B) 3.5 C) 100.09 D) 10.5 E) none of the above 12) What is the value of n when the empirical formula is C3H5 and the molecular mass is 205.4 g/mol?	^ <u>-</u>	B 19
A) 7 B) 3.5 C) 100.09 D) 10.5 E) none of the above 12) What is the value of n when the empirical formula is C ₃ H ₅ and the molecular mass is 205.4 g/mol? A) 140 MEF = AI 0726	^ <u>-</u>	B
A) 7 $(a c 0_3)$ B) 3.5 $(a c 0_3)$ C) 100.09 $(a c 0_3)$ $(a c$	^ <u>-</u>	B 18
A) 7 (a c 0 5 B) 3.5 C) 100.09 D) 10.5 E) none of the above 12) What is the value of n when the empirical formula is C3H5 and the molecular mass is 205.4 g/mol? A) 140 (mg) (a c 0 5 (b mol (a c 0 5) (c mol (a c 0 5) (d mol (a c 0 5)	^ <u>-</u>	B 18
A) 7	^ <u>-</u>	B 18
A) 7 (a c 0 5 B) 3.5 C) 100.09 D) 10.5 E) none of the above 12) What is the value of n when the empirical formula is C3H5 and the molecular mass is 205.4 g/mol? A) 140 (mg) (a c 0 5 (b mol (a c 0 5) (c mol (a c 0 5) (d mol (a c 0 5)	^ <u>-</u>	B
A) 7	^ <u>-</u>	
11) How find the first are into the in	.2) _	
11) How finding intoies of carbon are in 5.5 moles of carbon are in 5.5 moles of carbon. A) 7 B) 3.5 C) 100.09 D) 10.5 E) none of the above 12) What is the value of n when the empirical formula is C ₃ H ₅ and the molecular mass is 205.4 g/mol? A) 140 A) 140 B) 5 C) 10 D) 0.02 E) none of the above 13) When the equation $Ca_3N_2 + \sqrt{H_2O} \rightarrow \sqrt{Ca(OH)_2 + 2NH_3}$ is balanced, the coefficient of H ₂ O is: 14 A) 12	.2) _	
A) 7 $Ca CO_3$ B) 3.5 $O Ca CO_3$ C) 100.09 D) 10.5 E) none of the above 12) What is the value of n when the empirical formula is C ₃ H ₅ and the molecular mass is 205.4 g/mol? A) 140 $O Ca CO_3$ B) 5 $O Ca CO_3$ B) 6 $O Ca CO_3$ B) 7 $O Ca CO_3$ B) 8 $O Ca CO_3$ B) 9 $O Ca CO_3$ B) 10 $O Ca CO_3$ B) 10 $O Ca CO_3$ B) 10 $O Ca CO_3$ B) 11 $O Ca CO_3$ B) 12 $O Ca CO_3$ B) 13 $O Ca CO_3$ B) 14 $O Ca CO_3$ B) 15 $O Ca CO_3$ B) 16 $O Ca CO_3$ B) 16 $O Ca CO_3$ B) 17 $O Ca CO_3$ B) 18 $O Ca CO_3$ B) 19 $O Ca CO_3$ B) 10 $O Ca CO_3$ B) 11 $O Ca CO_3$ B) 12 $O Ca CO_3$ B) 14 $O Ca CO_3$ B) 15 $O Ca CO_3$ B) 15 $O Ca CO_3$ B) 16 $O Ca CO_3$ B) 16 $O Ca CO_3$ B) 17 $O Ca CO_3$ B) 17 $O Ca CO_3$ B) 17 $O Ca CO_3$ B) 18 $O Ca CO_3$ B) 19 $O Ca CO_3$ B) 10 $O Ca CO_$.2) _	
11) How finding intoies of carbon are in 5.5 moles of carbon are in 5.5 moles of carbon. A) 7 B) 3.5 C) 100.09 D) 10.5 E) none of the above 12) What is the value of n when the empirical formula is C ₃ H ₅ and the molecular mass is 205.4 g/mol? A) 140 A) 140 B) 5 C) 10 D) 0.02 E) none of the above 13) When the equation $Ca_3N_2 + \sqrt{H_2O} \rightarrow \sqrt{Ca(OH)_2 + 2NH_3}$ is balanced, the coefficient of H ₂ O is: 14 A) 12	.2) _	

14) If you had an aqueous mixture that contained Ag+) K+, and Pb+2 cations, how many different solids could precipitate if a chloride solution was added?	14)
A) 4	
B) 2	
C) no solids will precipitate D) 3	
E) 1	
15) A precipitate is expected to be formed when an aqueous solution of sodium sulfate is added to an	15)
aqueous solution of A) iron(III) chloride. NASO 4 + BALL (AB) + BASO 4(5) 2 NACL (AB)	
B) potassium chloride. (C) barium chloride.	E.
D) magnesium chloride.	
E) none of the above	
	10)
16) What is the molecular equation for the reaction of hydrochloric acid with potassium hydroxide?	16)
A) $HCl + KOH \rightarrow H_2O + KCl$	
B) 2HCl + K(OH) ₂ →2H ₂ O + KCl ₂	
C) $H_2Cl + 2KOH \rightarrow H_2O + 2KCl$	
D) H ⁺ + OH ⁻ →H ₂ O	
E) none of the above	
17) What type of a reaction occurs when a hydrochloric acid solution is mixed with a sodium	17) D
bicarbonate solution? $H(1 + NAHCO_3 \rightarrow H_2CO_3 + NAC1$	
A) precipitation	
B) gas evolution C) acid-base neutralization	
C) dela base risativation	
D) oxidation-reduction E) no reaction	
L) No reaction	f)
18) Identify the double displacement reactions among the following:	18)
1. $KCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + KNO_3(aq)$	
2. $Na_2SO_4(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$	
3. $H_2SO_4((aq) + 2NaOH(aq) \rightarrow Na_2SO_4((aq) + 2H_2O(1))$	
A) 1 and 3 only	
B) 2 and 3 only C) 1 and 2 only	
D) All of 1, 2, and 3	
E) None of 1, 2, and 3	
	19) Ŋ
19) Which of the following is TRUE? √ A) Stoichiometry allows prediction of how much of the reactants are necessary to form a given	17)
amount of product.	
√ B) Stoichiometry allows prediction of the amounts of products that form in a chemical reaction	
based on the amounts of reactants.	
C) Stoichiometry shows the numerical relationship between chemical quantities in a balanced	
chemical equation. √ D) All of the above are true.	
E) None of the above are true.	

20) How many grams of water are made from the reaction of 4.0 grams of hydrogen gas? 4 20) Given the reaction: $2H_2 + O_2 \rightarrow 2H_2O$ 4.09 H2 x 1 mol H2 x 2 mol H20 x 18.0148 9 H20 1 mol H20 A) 36 B) 72 C) 18 = 36 a D) 4.5 E) not enough information 21) A chemist wishes to perform the following reaction: $N_2 + 3 H_2 \rightarrow 2 NH_3$ 21) A If only 14.0~g of N_2 is available, what is the minimum amount, in grams, of H_2 needed to completely react with this quantity of N2? 14.09 N2 x 1 mo1 N2 x 3 mo1 H2 x 2.0158 9 H2 2 1 mo1 H2 A) 3.03 g B) 6.06 g C) 1.51 g = 3.03 q D) 1.01 g E) none of the above 22) What is the theoretical yield of waffles if you have 5 cups of flour, 9 eggs and 3 tbs of oil? 22) Given: 2 cups flour + 3 eggs + 1 tbs oil →4 waffles A) 4 B) 10 4 x 2.5 = 10 C) 6 D) 12 E) not enough information TRUE/FALSE. On scantron, choose "A" for a true answer and "B" for wrong answer. (3 points each) 23) The mole has a value of 6.023×10^{22} . 24) 24) The mass of 2.0 moles of H₂O is greater than the mass of 1.0 mole of CO₂. 25) Combustion reactions are a subcategory of oxidation-reduction reactions. 4 double displacement 26) 26) A precipitation reaction occurs when water is formed as a product. 4 a solid/ precipitate 27) Given the chemical equation: 2 Ca + $O_2 \rightarrow 2$ CaO, if 2 moles of CaO are formed in this reaction, then 2 moles of O2 must have reacted. 7 the coefficient of 02 is 1.

4 theoretical

28) The limiting reactant determines what the actual yield is.

28)